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Statement of the Problem 

 What are the design challenges that must be addressed to build a near-field microwave 
microscope that will develop contrast in electrodynamic properties (e.g. surface resistance and 
surface reactance) from a superconducting sample?  There are many considerations that come into 
play when designing a microwave microscope.  We have to start with the sample and the type of 
contrast that we hope to develop from it, and then work backwards to see how a microscope can 
be designed to uncover this contrast.  In this document we shall focus on linear response properties 
of the superconductors.  As an alternative, one can design a microscope to measure local nonlinear 
properties of superconductors [see Ref. 1], but this will not be discussed here. 

Superconducting Electrodynamics 

 The samples of interest are superconducting.  In general, these materials are 
inhomogeneous on several different length scales.  These inhomogeneities are of interest to image 
and study.  However, we will start with the assumption that the material is uniform and 
homogeneous and see what kind of response a microscope will develop in the presence of such a 
sample.  It should be remembered that this is a kind of “worst case scenario,” and that the real 
samples of interest probably will show more variable and interesting response.  The 
electrodynamic properties of superconductors are described by their complex conductivity 𝜎𝜎 =
𝜎𝜎1 − 𝑖𝑖𝜎𝜎2, where we adopt the 𝑒𝑒+𝑖𝑖𝑖𝑖𝑖𝑖 harmonic time convention.  The complex conductivity can be 
calculated from Mattis-Bardeen theory,2 or various generalizations that include the effects of 
quasiparticle lifetime,3,4 proximity coupling, magnetic impurities, weak links, etc.  We shall 
assume that the superconductor is local in the sense that the constitutive equation between electric 
field and current is simply 𝐽𝐽 = 𝜎𝜎𝐸𝐸�⃗ .  Under these circumstances, one can relate the complex 

conductivity to the complex surface impedance as 𝑍𝑍𝑠𝑠 = �𝑖𝑖𝑖𝑖𝜇𝜇0
𝜎𝜎

.  The surface impedance is 

complex, 𝑍𝑍𝑠𝑠 = 𝑅𝑅𝑠𝑠 + 𝑖𝑖𝑋𝑋𝑠𝑠, where 𝑅𝑅𝑠𝑠 is the surface resistance and 𝑋𝑋𝑠𝑠 is the surface reactance.  It 
represents the ratio of the tangential electric field to the tangential magnetic field at the surface of 
a flat and semi-infinite sample.  Superconductors have a different electrodynamic response from 
normal metals, semiconductors and insulators due to the large value of 𝜎𝜎2 ≫ 𝜎𝜎1, which results in 
𝑋𝑋𝑠𝑠 ≫ 𝑅𝑅𝑠𝑠, usually (but not always!).  The complex conductivity and surface impedance are 
generally strong functions of temperature, frequency, and sample geometry (i.e. constrictions in 
thickness and/or width).  Note that the concept of surface impedance as a boundary condition on 
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the electric and magnetic fields breaks down when the radius of curvature of the superconductor 
surface, or the current distribution in space, is less than or comparable to the penetration depth 𝜆𝜆.5  
The complex conductivity 𝜎𝜎 is therefore a “more fundamental” property of superconductors than 
surface impedance. 

Electric Tip Near-Field Microwave Microscope 

 We shall assume that an STM-tipped probe will be used to construct the microwave 
microscope.  This immediately puts us in the class of “Electric Tip” probes by the classification 
scheme of Ref.6  There is a characteristic length scale 𝐷𝐷 associated with the tip.  In the case of an 
STM tip we take 𝐷𝐷 to be the diameter of an equivalent sphere that models the end of the tip and is 
the source of electric field lines that are concentrated on the sample surface immediately below the 
tip.  There is a study of STM tips and their equivalent sphere size by Imtiaz and Anlage.7 

 

Figure 1.  Figure 2 from Ref.6  Close view of the coaxial probe, STM tip and sample, as well as a 
lumped element circuit model for the tip-sample interaction. 

 

 “In order to create a true near-zone or evanescent field in the sample, the tip characteristic 
size 𝐷𝐷 must be small enough not only compared to the free-space wavelength 𝜆𝜆𝐸𝐸𝐸𝐸, but also to 
provide |𝑘𝑘𝑠𝑠|𝐷𝐷 ≪ 1, where 𝑘𝑘𝑠𝑠 = 𝜔𝜔�𝜀𝜀0𝜀𝜀𝑠𝑠𝜇𝜇0𝜇𝜇𝑠𝑠 is the complex wave number for an electromagnetic 
wave in the material under test.  In this case the tip-sample interaction can be viewed as a “cloud” 
of the probing electric or magnetic field penetrating the sample. The size of this cloud is on the 
order of the tip size 𝐷𝐷 due to the static character of the near-field.  Therefore the microscope spatial 
resolution—both lateral and in-depth—is mostly governed by the tip geometry rather than the 
electrodynamic properties of the sample.”6  The dielectric function of a superconductor is given 
by 𝜀𝜀𝑠𝑠 = 𝜀𝜀𝑟𝑟,𝑆𝑆𝑆𝑆 −

𝑖𝑖𝑖𝑖
𝜀𝜀0𝜔𝜔

, where 𝜀𝜀𝑟𝑟,𝑆𝑆𝑆𝑆 is the relative dielectric constant of the superconductor which 

gives rise to displacement currents.  At microwave frequencies these currents are small compared 
to the physical currents, and so one typically neglects this term.  We shall also assume that the 
superconductor is non-magnetic, hence 𝜇𝜇𝑠𝑠 = 1.  Exceptions to this include materials such as Gd-
Ba-Cu-O, which have coexisting antiferromagnetism on the Gd sub-lattice and superconductivity 
in the Cu-O planes.8,9  Writing out the complex conductivity, we have 𝜀𝜀𝑠𝑠 = −1

𝜀𝜀0𝜇𝜇0𝜔𝜔2𝜆𝜆2
− 𝑖𝑖𝜎𝜎1

𝜀𝜀0𝜔𝜔
, where 

we have used the approximation that 𝜎𝜎2 ≈
1

𝜇𝜇0𝜔𝜔𝜆𝜆2
, and 𝜆𝜆 is the magnetic penetration depth.  If we 

make the further assumption that 𝜎𝜎2 ≫ 𝜎𝜎1, which is not always valid, we can write the approximate 
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superconductor dielectric function as, 𝜀𝜀𝑠𝑠 ≈
−1

𝜀𝜀0𝜇𝜇0𝜔𝜔2𝜆𝜆2
.   Going back to the complex wavenumber 

calculation, we can now write 𝑘𝑘𝑠𝑠 ≈ 𝑖𝑖/𝜆𝜆, showing that the wave propagation inside the 
superconductor is evanescent, to good approximation, and the electromagnetic excitation in the 
superconductor decays on the scale of the penetration depth.  Finally, to establish the condition 
|𝑘𝑘𝑠𝑠|𝐷𝐷 ≪ 1 requires that 𝐷𝐷 ≪ 𝜆𝜆, which is a somewhat demanding requirement.  In the case of a 
“typical” low carrier density superconductor we may have 𝜆𝜆 = 200 𝑛𝑛𝑛𝑛.  Hence the tip 
characteristic dimension 𝐷𝐷 should be on the order of, say, 50 𝑛𝑛𝑛𝑛, or smaller.  This would establish 
the conditions for “a true near-zone or evanescent field in the sample.”6 

 Next is the question of the magnitude of the surface impedance of the superconductor.  
Here we take the approximation that the superconductor is in the local limit and that the surface 
impedance concept is still valid.  In Ref.6 it is shown that the bulk (i.e. a semi-infinite sample) 
impedance of the sample is given by the approximation 𝑍𝑍𝑠𝑠𝑠𝑠 ≈

1
𝑖𝑖𝑖𝑖𝜀𝜀0𝜀𝜀𝑠𝑠𝐷𝐷

, “which is basically the 

impedance of a capacitor with a geometrical capacitance 𝜀𝜀0𝐷𝐷 filled up with material of complex 
relative permittivity 𝜀𝜀𝑠𝑠.”6  If we again make the approximation that 𝜎𝜎2 ≫ 𝜎𝜎1, which is not always 
valid, we can write the approximate superconductor dielectric function as, 𝜀𝜀𝑠𝑠 ≈

−1
𝜀𝜀0𝜇𝜇0𝜔𝜔2𝜆𝜆2

.  This 

leads to a surface impedance that is purely imaginary (i.e. inductive reactive), 𝑍𝑍𝑠𝑠𝑠𝑠 ≈ 𝑖𝑖𝜇𝜇0𝜔𝜔
𝜆𝜆2

𝐷𝐷
, and 

is proportional to the tip-related effective penetration depth 𝜆𝜆
2

𝐷𝐷
.  Note that this differs from the usual 

expression for the effective penetration depth of a superconducting thin film of thickness 𝑡𝑡, 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 =
𝜆𝜆2

𝑡𝑡
, which is valid in the limit 𝑡𝑡 ≪ 𝜆𝜆.  In the near-field limit, the tip diameter partially sets the scale 

for penetration of electromagnetic fields into the superconductor, even in a bulk material. 

It will turn out that increasing the magnitude of 𝑍𝑍𝑠𝑠𝑠𝑠 will be desirable.  To maximize the 
bulk superconducting impedance magnitude, one wants to maximize operating frequency 𝜔𝜔, 
maximize the magnetic penetration depth 𝜆𝜆 (i.e. consider low carrier density materials and granular 
materials, or go to temperatures near 𝑇𝑇𝑐𝑐 or frequencies near the gap frequency), and minimize the 
tip characteristic dimension 𝐷𝐷.  Note that increasing the frequency comes at the price of increasing 
radiation loss from the electric-tip probe, and brings one closer to the spectroscopic energy gap of 
the superconductor, 2∆. 

 Here we will estimate the magnitude of the surface impedance presented by various 

superconductors to the electric tip probe: 𝑍𝑍𝑠𝑠𝑠𝑠 ≈ 𝑖𝑖𝜇𝜇0𝜔𝜔
𝜆𝜆2

𝐷𝐷
.  First consider the case of a low-Tc bulk 

superconductor, such as Pb.  Assume a frequency of 1 GHz, magnetic penetration depth of 𝜆𝜆 =
52.5 𝑛𝑛𝑛𝑛,10 and tip characteristic dimension of 𝐷𝐷 = 20 𝑛𝑛𝑛𝑛.  One finds in this case that 𝑍𝑍𝑠𝑠𝑠𝑠 ≈
𝑖𝑖 1.1 𝑚𝑚Ω. 

 Next consider the case of a high-Tc bulk superconductor such as Bi2212.  Assume a 
frequency of 1 GHz, an in-plane magnetic penetration depth of 𝜆𝜆 = 200 𝑛𝑛𝑛𝑛 (this implicitly 
assumes that one is tunneling into the ab-planes from the c-direction), and tip characteristic 
dimension of 𝐷𝐷 = 20 𝑛𝑛𝑛𝑛.  One finds in this case that 𝑍𝑍𝑠𝑠𝑠𝑠 ≈ 𝑖𝑖 15.8 𝑚𝑚Ω.  Tunneling into the side 
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of a Bi2212 crystal from the a- or b-direction would involve the c-axis screening length, which is 
considerably larger than 200 nm, hence 𝑍𝑍𝑠𝑠𝑠𝑠 would be larger, perhaps on the order of 𝑖𝑖 1 Ω. 

 Next consider the case of a granular superconductor such as granular Aluminum (GrAl).  
Assume a frequency of 1 GHz, magnetic penetration depth of 𝜆𝜆 = 3.2 𝜇𝜇𝜇𝜇 (this is a film of 

thickness 𝑡𝑡 = 20 𝑛𝑛𝑛𝑛 with 𝐿𝐿𝐾𝐾/⊡ = 𝜇𝜇0
𝜆𝜆2

𝑡𝑡
= 0.64 𝑛𝑛𝑛𝑛/⊡ in Table I of Ref.11), and tip characteristic 

dimension of 𝐷𝐷 = 20 𝑛𝑛𝑛𝑛.  One finds in this case that 𝑍𝑍𝑠𝑠𝑠𝑠 ≈ 𝑖𝑖 4.0 Ω. 

Model of Electric-Tip / Sample Interaction 

 Prior work with transmission line resonator microwave microscopes with an STM tip 
extension of the center conductor used a series lumped-element model of tip-sample interaction.  
It assumed that the tip-sample capacitance 𝐶𝐶𝑥𝑥 is in series with the sample resistance 𝑅𝑅𝑥𝑥.  It was 
found that the minimum Q of the resonator (a measure of good sensitivity to the sample properties) 
was at the point where 𝜔𝜔𝑅𝑅𝑥𝑥𝐶𝐶𝑥𝑥 = 1.12  This microscope design is not optimized for superconductor 
sample investigation, and the model is oversimplified, hence these results should be treated with 
caution.  Nevertheless, it gives a general idea that there is a tradeoff between operating frequency, 
probe-sample capacitance, and the range of accessible sample loss values. 

 What are typical values of tip-sample capacitance 𝐶𝐶𝑥𝑥 for STM tips over metallic samples?  
Imtiaz reports 𝐶𝐶𝑥𝑥 ≈ 1 − 10 𝑓𝑓𝑓𝑓 for etched W tips at tunneling heights.12  Tip-sample capacitance 
values on the order of 1 𝑓𝑓𝑓𝑓 were seen in another study.13 

 The lumped element model in Fig. 2 from Ref.6 is shown above.  The impedance 𝑍𝑍𝑡𝑡𝑡𝑡  of 

the electric tip is given by (𝑍𝑍𝑡𝑡𝑡𝑡)−1 = � 1
𝑖𝑖𝑖𝑖𝐶𝐶𝑐𝑐

+ 𝑍𝑍𝑠𝑠�
−1

+ 𝑖𝑖𝑖𝑖𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠, where 1/𝐶𝐶𝑐𝑐 = 1/𝐶𝐶𝑐𝑐1 + 1/𝐶𝐶𝑐𝑐2 and 

𝑍𝑍𝑠𝑠 is the sample impedance.  “To obtain high enough sensitivity to the sample properties (i.e., to 
make 𝑍𝑍𝑡𝑡𝑡𝑡~𝑍𝑍𝑠𝑠), it is imperative to have both 1/𝜔𝜔𝜔𝜔𝑐𝑐𝑍𝑍𝑠𝑠 and 𝜔𝜔𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑍𝑍𝑠𝑠 much smaller than or at least 
on the order of unity.” 6  The first condition depends on the tunneling height since in the case of 
an STM tip over a sample  𝐶𝐶𝑐𝑐 ≈ 𝐶𝐶𝑥𝑥.  Since 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 (stray capacitance from the tip to ground) is 
generally “small”, we expect the condition 𝜔𝜔𝜔𝜔𝑠𝑠𝑡𝑡𝑡𝑡𝑍𝑍𝑠𝑠 ≪ 1 to be easily satisfied.  For the first 
condition, take a frequency of 1 GHz, 𝐶𝐶𝑥𝑥 = 1𝑓𝑓𝑓𝑓, and 𝑍𝑍𝑠𝑠 = 4.0 Ω (the case of GrAl).  This yields 
1/𝜔𝜔𝜔𝜔𝑐𝑐𝑍𝑍𝑠𝑠 = 4 × 104, which does not satisfy the criterion that it be much less than unity.  This 
means that the electric tip impedance is dominated by the tip-sample capacitance, rather than the 
sample impedance, even in the case of a granular superconductor.  This is the fundamental 
problem in probing low-impedance samples, such as superconductors, with an electric probe 
tip.  Such microscopes are basically scanning capacitance meters with virtually no sensitivity to 
superconducting microwave properties. 

Possible approaches to mitigating this issue include increasing the tip-sample capacitance 
by going closer to the sample, increasing the operating frequency of the microscope, and increasing 
the sample impedance, perhaps by going to lower carrier density materials, and/or adding magnetic 
vortices.  Note that making the tip characteristic dimension 𝐷𝐷 smaller will serve to increase the 

sample impedance 𝑍𝑍𝑠𝑠𝑠𝑠 ≈ 𝑖𝑖𝜇𝜇0𝜔𝜔
𝜆𝜆2

𝐷𝐷
, and decrease the tip-sample capacitance 𝐶𝐶𝑥𝑥 ∝ 𝜀𝜀0𝐷𝐷, hence it will 

probably not change the value of 1/𝜔𝜔𝜔𝜔𝑐𝑐𝑍𝑍𝑠𝑠. 
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(Generally Unsuccessful) Approaches to Improving Electric-Tip Sensitivity to 
Superconductors 

There are a number of methods that have been employed to improve the sensitivity of the 
microwave response signal to the tip-sample interactions.  This includes the use of “impedance 
matching” techniques, and the idea of modulating the tip-sample distance periodically in time, and 
measuring the response at the modulation frequency to remove the effects of “stray capacitance”. 

Lumped LC circuit impedance matching 

A number of groups have explored the idea of building an impedance matching circuit that 
serves to match the high impedance of the electric-tip probe to 50 Ω.  The radio-frequency 
scanning tunneling microscope uses a lumped LC-circuit to create a reflection zero in a “shunt-
impedance” measurement configuration.14  The main accomplishment of this paper is to utilize the 
STM tunnel barrier resistance 𝑅𝑅 as a tunable parameter, combined with the fixed LC circuit 
elements,  to create an LCR circuit that has a zero in 𝑆𝑆11 at a frequency in the 100 MHz range.  It 
essentially maps the tip height 𝑧𝑧 onto a strongly variable reflected voltage wave amplitude near 
the 𝑆𝑆11 = 0 condition.  In some sense this is a step backwards because the DC tunnel current is 
more sensitive to 𝑧𝑧 than the reflected RF signal, and this is evident in their topography images in 
Figs. 1(c) and (d).  However, it enables the feedback loop to operate on an RF signal that has 
roughly 1-10 MHz of bandwidth, which is superior to the bandwidth of conventional DC tunnel 
current based feedback loops.  However, they do not experimentally demonstrate any advantage 
to the higher bandwidth in the paper.  They make no claims about sensitivity to sample properties, 
other than topography of Au surfaces. 

As an aside, the RF-STM approach brings up the question of how to model the tip-to-
sample impedance.  In STM, one thinks of the vacuum barrier as providing a resistance 𝑅𝑅 that 
depends on the probe-sample separation 𝑧𝑧.  At microwave frequencies we look at the same 
situation and see a probe-sample capacitance, and see a displacement current across that gap.  In 

fact, at finite frequency both channels act in parallel, creating 𝑍𝑍𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≈ �1
𝑅𝑅

+ 𝑖𝑖𝑖𝑖𝐶𝐶𝑥𝑥�
−1

.  At 
low frequencies where STM is done, the resistance carries the current, while at high frequencies 
the current will flow mainly through the capacitor. 

 The PrimeNano approach to impedance matching utilizes a 1/4-wave stub tuner.15  The 
impedance matching circuit creates a strong response from the probe/sample combination at one 
frequency, but does not change the physics of the probe-sample interaction discussed above.  The 
use of a cancellation signal to null the background signal is also a good idea,15 but it does not alter 
the physics of the probe/sample interaction.  Note that in Ref.15 they acknowledge this basic fact: 
“Similar to other microwave microscopes, no contrast will show up in the resistive channel if the 
sample is insulating or a perfect metal,21” where Ref. 21 are two papers by Atif Imtiaz.7,12  Figure 
2 of this paper16 has a nice summary of MIM images for very low and very high sheet resistance 
samples.  In the low sheet resistance sample the capacitance image is very clear while the resistive 
image has very little contrast. 



6 
 

 The bottom line is that I do not see how an impedance matching circuit can overcome the 
issue of tip-sample capacitance dominating the response of the microscope tip.   

Oscillating the tip-sample separation 

 An alternative method to gather information from the tip-sample interaction is achieved by 
means of modulating the tip-sample distance in time.17,18,19,20  One then recovers a signal at the tip 
modulation frequency in order to eliminate background scattering from the tip, sample, stray 
capacitance, etc.  The signals are taken from a lock-in at the modulation frequency, and represent 
the z-derivatives of transmission magnitude and phase, in the case of Keilmann.18  The resulting 
signal arises from the near-tip and sample interaction, and this serves to improve the spatial 
resolution of the images.  However, if the impedance of the 𝐶𝐶𝑥𝑥 capacitor dominates 𝑍𝑍𝑡𝑡𝑡𝑡 , then the 
modulated signal only seems to reflect the time-dependence of 𝐶𝐶𝑥𝑥.  This modulation will not 
change the balance between the tip-sample capacitance and the sample impedance.  For more 
detail, look at the work of Fritz Keilmann, and other papers by the early STM microwave 
microscopy folks. 

Other ways to enhance superconductor loss to create contrast in an electric-tip near-field 
microwave microscope 

In all of the above discussion we have ignored the contribution of 𝜎𝜎1 to the dielectric 
function and surface impedance.  The question arises: how can we make the magnitude of 𝜎𝜎1 large 
in the superconducting state?  In fully-gapped superconductors 𝜎𝜎1 → 0 in the limit of zero 
temperature.  In reality, all superconductors have sources of residual loss that prevent the real part 
of the conductivity from reaching zero.  This intrinsic loss can become large (on the order of the 
normal state conductivity 𝜎𝜎𝑛𝑛) in gapless superconductors, created (for example) by magnetic 
impurities in s-wave superconductors.  In nodal superconductors one might expect an intrinsic 
non-zero residual value of 𝜎𝜎1 due to the nodes, in the limit of zero temperature.  In line-nodal 
superconductors (such as the cuprates) one has a universal residual 𝜎𝜎1 given by 𝜎𝜎00 = 𝑛𝑛𝑒𝑒2ℏ

𝑚𝑚∆𝑑𝑑
, as 

derived by Hirschfeld.21  In point-nodal superconductors there is also a finite residual 𝜎𝜎1, but it 
does not have a universal value, according to Hirschfeld (private discussion).  Note that losses are 
also enhanced when strong currents flow in the superconductor, and this can be brought about by 
geometrically constraining the current flow in the superconductor by decreasing 𝐷𝐷, film thickness, 
or patterned film width. 

 We can calculate the bulk impedance of the superconductor keeping the real part of the 
conductivity in the dielectric function expression. The result is given by 𝑍𝑍𝑠𝑠𝑠𝑠 ≈ 𝑖𝑖𝜇𝜇0𝜔𝜔

𝜆𝜆2

𝐷𝐷
�1 − 𝑖𝑖 𝜎𝜎1

𝜎𝜎2
�, 

where it is assumed that 𝜎𝜎2 = 1
𝜇𝜇0𝜔𝜔𝜆𝜆2

≫ 𝜎𝜎1.  Hence, we can write 𝑍𝑍𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑠𝑠𝑠𝑠 + 𝑖𝑖𝑋𝑋𝑠𝑠𝑠𝑠, with 𝑅𝑅𝑠𝑠𝑠𝑠 =
𝜎𝜎1
𝐷𝐷

(𝜇𝜇0𝜔𝜔𝜆𝜆2)2 and 𝑋𝑋𝑠𝑠𝑠𝑠 = 𝜇𝜇0𝜔𝜔
𝜆𝜆2

𝐷𝐷
.   Going back to the electric-tip impedance 𝑍𝑍𝑡𝑡𝑡𝑡 ≈

1
𝑖𝑖𝑖𝑖𝐶𝐶𝑐𝑐

+ 𝑍𝑍𝑠𝑠𝑠𝑠, and 

assuming that 𝑋𝑋𝑠𝑠𝑠𝑠 ≪
1

𝜔𝜔𝐶𝐶𝑐𝑐
, we have 𝑍𝑍𝑡𝑡𝑡𝑡 ≈

1
𝑖𝑖𝑖𝑖𝐶𝐶𝑐𝑐

+ 𝑅𝑅𝑠𝑠𝑠𝑠 = 1
𝑖𝑖𝑖𝑖𝐶𝐶𝑐𝑐

+ 𝜎𝜎1
𝐷𝐷

(𝜇𝜇0𝜔𝜔𝜆𝜆2)2 = 𝑅𝑅𝑡𝑡𝑡𝑡 + 𝑖𝑖𝑋𝑋𝑡𝑡𝑡𝑡.  We can 

now go back to Ref.6 and calculate the 𝑄𝑄 of a transmission line resonator terminated with an 
electric tip, Eq. (17).  We make the approximation that 𝑋𝑋𝑡𝑡𝑡𝑡 ≫ 𝑅𝑅𝑡𝑡𝑡𝑡 , and the 𝑄𝑄 expression simplifies 
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to 𝑄𝑄 ≈ 𝜋𝜋𝜋𝜋+𝑍𝑍0/𝑋𝑋𝑡𝑡𝑡𝑡
2 ℎ′′𝐿𝐿+2𝑍𝑍0𝑅𝑅𝑡𝑡𝑡𝑡/𝑋𝑋𝑡𝑡𝑡𝑡

2 , where 𝑛𝑛 is a positive integer (mode number of the transmission line 

resonator), 𝑍𝑍0 is the characteristic impedance of the transmission line, and ℎ’’ is the imaginary part 
of the propagation constant of the transmission line of length 𝐿𝐿.  This argues for making 𝑍𝑍0/𝑋𝑋𝑡𝑡𝑡𝑡 ≫
1 to maximize the 𝑄𝑄 and to help make the  2𝑍𝑍0𝑅𝑅𝑡𝑡𝑡𝑡/𝑋𝑋𝑡𝑡𝑡𝑡2  term dominate over the 2 ℎ′′𝐿𝐿 term in the 
denominator.  Further, one would have to use a short superconducting transmission line resonator 
with vacuum, or other low-loss, dielectric to minimize the 2 ℎ′′𝐿𝐿 term.  Under these circumstances 
one would develop contrast in the 𝑄𝑄 of the microwave microscope associated with variations in 𝜎𝜎1 
of the sample.  Variations in the reactance 𝑋𝑋𝑠𝑠𝑠𝑠 may show up as changes in the resonant frequency. 

 Another source of contrast in superconducting samples will come from magnetic vortices 
in the material.  A microwave microscope has measured the nonlinear response associated with 
Josephson vortices in a cuprate thin film grain boundary.22,23  A single magnetic vortex will 
introduce both resistive and reactive contributions to the surface impedance presented by the 
superconductor to the electric tip microscope.  The traditional approach to calculating the 
impedance of a large collection of magnetic vortices is the work of Gittleman and Rosenblum,24 
later updated by Coffey and Clem.25  These approaches do not address the loss and reactance of 
individual vortices.26  However, the core of the vortex is essentially normal conducting, at least in 
classical low-Tc superconductors.  Hence it should present 𝜎𝜎1~𝜎𝜎𝑛𝑛 to the microscope when 
positioned over the vortex core.  Imaging vortices by means of their enhanced microwave losses 
and reactance is an interesting opportunity, and we are not aware of any work in this area.   

Question the Assumptions! 

 The above estimates are made under a number of approximations which are not always 
valid, or may be circumvented in some situations.  The main assumption is that we are using an 
“electric tip” probe, and that the near-field quasi-static electrodynamic fields are achieved in the 
sample.  Another assumption is that the surface impedance boundary condition concept is valid.  
We have also assumed that the superconductor is in the bulk limit and does not have any 
geometrical constraints (such as thickness and width) that can enhance the microwave current 
values and increase the magnitude of the effective impedance. 

 

Acknowledgement: I have benefitted greatly from discussions with Dr. Vladimir Talanov. 
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